Cyclic voltammetry (CV) is an electrolytic method that uses microelectrodes and an unstirred solution so that the measured current is limited by analyte diffusion at the electrode surface. The electrode potential is ramped linearly to a more negative potential, and then ramped in reverse back to the starting voltage. The forward scan produces a current peak for any analytes that can be reduced through the range of the potential scan. The current will increase as the potential reaches the reduction potential of the analyte, but then falls off as the concentration of the analyte is depleted close to the electrode surface. As the applied potential is reversed, it will reach a potential that will reoxidize the product formed in the first reduction reaction, and produce a current of reverse polarity from the forward scan. This oxidation peak will usually have a similar shape to the reduction peak. The peak current, ip, is described by the Randles-Sevcik equation:
ip = (2.69x105) n3/2 A C D1/2 v1/2
where n is the number of moles of electrons transferred in the reaction, A is the area of the electrode, C is the analyte concentration (in moles/cm3), D is the diffusion coefficient, and v is the scan rate of the applied potential.
The potential difference between the reduction and oxidation peaks is theoretically 59 mV for a reversible reaction. In practice, the difference is typically 70-100 mV. Larger differences, or nonsymmetric reduction and oxidation peaks are an indication of a nonreversible reaction. These parameters of cyclic voltammograms make CV most suitable for characterization and mechanistic studies of redox reactions at electrodes.
a method for determining the kinetics of electrode processes. Current is monitored as the potential of the electrode is changed.